Continual and Reinforcement Learning for Edge AI

Framework, Foundation, and Algorithm Design
de

, ,

Éditeur :

Springer

Paru le : 2025-05-20

This book provides a comprehensive introduction to continual and reinforcement learning for edge AI, which investigates how to build an AI agent that can continuously solve new learning tasks and enhance the AI at resource-limited edge devices. The authors introduce readers to practical frameworks a...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
42,39
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2025-05-20

Pages
265 pages

EAN papier
9783031843624

Auteur(s) du livre


Hang Wang is a Ph.D. candidate in the Department of Electrical and Computer Engineering at the University of California, Davis. He received his B.E. from the University of Science and Technology of China (USTC). His research aims to establish a fundamental understanding of reinforcement learning, multi-agent systems, and human-AI interaction, as well as practical applications such asautonomous driving and edge computing. His contributions have been published in NeurIPS, AAMAS. His recent work on Warm-start Reinforcement Learning also garnered attention and acclaim via an oral presentation at ICML. Sen Lin, Ph.D., is an Assistant Professor in the Department of Computer Science at University of Houston. He received his Ph.D. degree from Arizona State University, M.S. from HKUST and B.E. from Zhejiang University. His research interests broadly fall in the intersection of machine learning and wireless networking. Currently, his research focuses on developing algorithms and theories in continual learning, meta-learning, reinforcement learning, adversarial machine learning and bilevel optimization, with applications in multiple domains, e.g., edge computing, security, network control. Junshan Zhang, Ph.D. is a Professor in the ECE Department at the University of California, Davis. He received his Ph.D. from the School of ECE at Purdue University. His research interests fall in the general field of information networks and data science, including edge intelligence, reinforcement learning, continual learning, network optimization and control, and game theory, with applications in connected and automated vehicles, 5G and beyond, wireless networks, IoT data privacy/security, and smart grid.

Caractéristiques détaillées - droits

EAN PDF
9783031843631
Prix
42,39 €
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
12820 Ko
EAN EPUB
9783031843631
Prix
42,39 €
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
37816 Ko

Suggestions personnalisées